Satellite Global and Hemispheric Lower Tropospheric Temperature Annual Temperature Cycle

نویسندگان

  • Benjamin M. Herman
  • Michael A. Brunke
  • Roger A. Pielke
  • John R. Christy
  • Richard T. McNider
چکیده

Previous analyses of the Earth’s annual cycle and its trends have utilized surface temperature data sets. Here we introduce a new analysis of the global and hemispheric annual cycle using a satellite remote sensing derived data set during the period 1979–2009, as determined from the lower tropospheric (LT) channel of the MSU satellite. While the surface annual cycle is tied directly to the heating and cooling of the land areas, the tropospheric annual cycle involves additionally the gain or loss of heat between the surface and atmosphere. The peak in the global tropospheric temperature in the 30 year period occurs on 10 July and the minimum on 9 February in response to the larger land mass in the Northern Hemisphere. The actual dates of the hemispheric maxima and minima are a complex function of many variables which can change from year to year thereby altering these dates. Here we examine the time of occurrence of the global and hemispheric maxima and minima lower tropospheric temperatures, the values of the annual maxima and minima, and the slopes and significance of the changes in these metrics. The statistically significant trends are all relatively small. The values of the global annual maximum and minimum showed a small, but significant trend. Northern and Southern Hemisphere maxima and minima show a slight trend toward occurring later in the year. Most recent analyses of OPEN ACCESS Remote Sens. 2010, 2 2562 trends in the global annual cycle using observed surface data have indicated a trend toward earlier maxima and minima.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accuracy Improvement of Tropospheric Delay Interpolation in RTK Networks

The effect of troposphere on the signals emitted from global navigation satellite system (GNSS) satellites, appears as an extra delay in the measurement of the signal traveling from the satellite to receiver. This delay depends on the temperature, pressure, humidity as well as the transmitter and receiver antennas location. In GNSS positioning, tropospheric delay effects on accuracy of differen...

متن کامل

Surface Air Temperature and Its Changes over the past 150 Years

We review the surface air temperature record of the past 150 years, considering the homogeneity of the basic data and the standard errors of estimation of the average hemispheric and global estimates. We present global fields of surface temperature change over the two 20-year periods of greatest warming this century, 1925–1944 and 1978–1997. Over these periods, global temperatures rose by 0.378...

متن کامل

Stratospheric temperature trends: our evolving understanding

We review the scientific literature since the 1960s to examine the evolution of modeling tools and observations that have advanced understanding of global stratospheric temperature changes. Observations show overall cooling of the stratosphere during the period for which they are available (since the late 1950s and late 1970s from radiosondes and satellites, respectively), interrupted by episod...

متن کامل

The effect of diurnal correction on satellite-derived lower tropospheric temperature.

Satellite-based measurements of decadal-scale temperature change in the lower troposphere have indicated cooling relative to Earth's surface in the tropics. Such measurements need a diurnal correction to prevent drifts in the satellites' measurement time from causing spurious trends. We have derived a diurnal correction that, in the tropics, is of the opposite sign from that previously applied....

متن کامل

ITG: A New Global GNSS Tropospheric Correction Model

Tropospheric correction models are receiving increasing attentions, as they play a crucial role in Global Navigation Satellite System (GNSS). Most commonly used models to date include the GPT2 series and the TropGrid2. In this study, we analyzed the advantages and disadvantages of existing models and developed a new model called the Improved Tropospheric Grid (ITG). ITG considers annual, semi-a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2010